

Vacuum
● Records deleted or obsoloted by an update are

not reclaimed as free space and cannot be
reused

● Vacuum claims that space for the system to
reuse, but does not reclaim the space

● No lock, can be done in production
● Vacuum full actually reclaims the space

● Gets an exclusive lock, not production
● But backup / restore seems a more efficient procedure

than vacuum full

Partitioning
● What is it?

● Splitting one large logical table into various small physical
tables

● What for?
● Certain queries can be optimized

– various smaller indexes
– full scans only on subtables

● Operations on a whole partition are efficient and easy
– droping a whole partition
– copying it to another media

● Seldom used data can be put into cheaper or slower
tablespaces

Partitioning
● Needed?

● Our dCache instance has an ever-growing database that
is interesting to keep: BillingDB

● At PIC, it is around 14 Gb, and doorinfo by itself is more
than 8 Gb. That's only for 2008.

● We use Brian Bockleman's GraphTool package to do
some nice plots, and would like to keep that information
available.

Partitioning: Implementation
● Create a master table

● This table will contain no data, have no checks, and no
indexes
CREATE TABLE doorinfo (
 dates tamp times tamp w ithout time zone, (discrimination field)
 cellname character varying,
 "action" character varying,
 " ow ner" charac ter va rying , (index)
 mappeduid numeric,
 mappedgid numeric,
 client character varying,
 " trans ac tion" charac ter varying , (index)
 pnfsid character varying,
 connectiontime numeric,
 queuedtime numeric,
 errorcode numeric,
 errormessage character varying,
 path character varying
);

Partitioning: Implementation
● Create several child tables, that each inherit

from the master table. Each of these tables is
refered as partition

create table doorinfo_y2007 () inherits (doorinfo);
create table doorinfo_y2008 () inherits (doorinfo);
create table doorinfo_y2009 () inherits (doorinfo);
create table doorinfo_y2010 () inherits (doorinfo);

Partitioning: Implementation
● Add table constraints to define the allowed keys

in each partition
create table doorinfo_y2008 (check (timestamp >= DATA '2008-01-01' AND

timestamp < DATE '2008-12-31')) inherits (doorinfo);
create table doorinfo_y2009 (check (timestamp >= DATA '2009-01-01' AND

timestamp < DATE '2009-12-31')) inherits (doorinfo);
create table doorinfo_y2010 (check (timestamp >= DATA '2010-01-01' AND

timestamp < DATE '2010-12-31')) inherits (doorinfo);
create table doorinfo_y2011 (check (timestamp >= DATA '2011-01-01' AND

timestamp < DATE '2011-12-31')) inherits (doorinfo);

Partitioning: Implementation
● Create indexes on the key columns if needed

– We have two indexes on doorinfo, owner and
transaction

create index doorinfo_y2007_owner on doorinfo_y2007 (owner);
create index doorinfo_y2007_transaction on doorinfo_y2007 (transaction);
create index doorinfo_y2008_owner on doorinfo_y2008 (owner);
create index doorinfo_y2008_transaction on doorinfo_y2008 (transaction);

Partitioning: Implementation
● Define a trigger to redirect data inserted into the

master table
create or replace function doorinfo_insert_trigger()
returns trigger as $$
begin
 insert into doorinfo_y2009 values (new.*);
 return null;
end;
$$
language plpgsql;

create trigger insert_doorinfo_trigger
 before insert on doorinfo
 for each row execute procedure doorinfo_insert_trigger();

● With this approach, we will need to update the
function each year

Partitioning: Implementation
● You can define a more complicated trigger that

automatically selects the correct partition
create or replace function doorinfo_insert_trigger()
return trigger as $$
begin
 if (new.datestamp >= DATE '2007-01-01' and new.logdate < DATE '2007-12-31') then
 insert into doorinfo_y2007 values (new.*);
 elseif (new.logdate >= DATE '2008-01-01' and 'new.logdate < DATE '2008-12-31') then
 insert into doorinfo_y2008 values (new.*);
 else
 raise exception 'date out of range';
 end if;
 return null;
end;
$$
language plpgsql;

Partitioning: Notes
● Ensure that the constraint_exclusion parameter is

enabled in postgresql.conf

● Constraint exclusion
● Query optimization technique
● Allows planner to scan only one child table instead of all

the tables if a constant is used in the query

select * from doorinfo where datestamp >= DATE '2008-05-21';

Partitioning: Notes
● No automatic way to verify the CHECK

constraints
● VACUUM & ANALYZE commands have to be

executed on the subtables as well
● Constraint exclusion

● Query optimization technique
● Allows planner to scan only one child table instead of all

the tables

Partitioning: Notes
● To migrate a table to other media, you can use

ALTER TABLE name SET TABLESPACE new_tablespace;
● That will not migrate indexes; move them by hand

Warm Standby
● What is it?

● It is a technique for being able to have an up-to-date
database that mirrors de production database

● What it is for
● Up-to-the-minute (constant) backups of the database
● Fast recovery

● Involves playing with the WAL files

Warm Standby: Write Ahead
Log

● Keeping logs of every change on the data
pages

● Changes to data have to be written after they
have been logged and the log is safe on disk

● This allows roll-forward / redo
● We can replay what happened before a crash

● This allows committing transactions without
needing to flush data to disk

● Less I/O

Warm Standby: Write Ahead
Log

● WAL files live in the pg_xlog directory
● Postgres uses WAL files if there is a crash in

the postgres server process
● But those same WAL files can also be used for

● Continous Archiving (backups up to the minute)
● Point-in-time Recovery (time machine)

Warm Standby: Continous
Archiving

● Setup a script that copies WAL files modifying
some parameters in postgresql.conf

● archive_mode
● archive_command
● archive_timeout

● We can keep a backup of the file-system level
database and the WAL files, and replay them as
backup recovery procedure

● Simulating a crash – postgresql won't be able to tell the
diference

Warm Standby: Continous
Archiving

● We can also have a secondary server
continously in crash-recovery mode recovering
from WALs sent from the primary server

● also called file-based log shipping
● That means we will have a live backup of the

data, with synchronization up to the minute
● If you also want non-live backups, you can

backup from the secondary
● reduced load on the primary server

Warm Standby: Procedure
● Set up primary and standby systems as near

identically as possible, including two identical
copies of PostgreSQL at the same release
level.

● Set up continuous archiving from the primary to
a WAL archive located in a directory on the
standby server.

Warm standby: Procedure
● Make a base backup of the primary server, and

load this data onto the standby.
● Begin recovery on the standby server from the

local WAL archive, using a recovery.conf that
specifies a restore_command that is looping
waiting for new WAL files to be shipped.

Warm standby
● This smells like High Availability, but it is not – it

is Online Backup / Fast Recovery
● For high availability, we need the capability of

do Failover
● This can be done

● Via an external tool, i.e., Heartbeat
● Through other aproaches, like Slony

Slony
● What is it?

● It is a master-slave replication system to replicate large
databases to a reasonably limited number of slave
systems

● Providing cascading and automatic failover
● External package not provided by postgres developers
● Can be installed by compiling from source code or via

provided rpms

Slony: Concepts
● Master

● Node that can read and write the database
● Slave

● Node that can only read the database
● Subscription

● Nodes subscribe to a set of tables; master is the provider
while slave are the subscriptors

● Is it based on record-based log shipping
● slaves have each modified record shipped to them so

they have an almost identical copy of the master

Slony: Concepts
● New slony (2.0) only runs with Postgres 8.3

– Uses new features from 8.3

Backups vs Warm Standby vs
Slony

● Backups: Disaster Recovery
● Downtime: reaction time + some hours
● Data loss: some hours

● can be lowered highly if you also archive WAL files
● Warm standby: Fast Recovery

● Downtime: reaction time + some minutes
● can be lowered with an automatic failover tool like heartbeat

● Data loss: up to 1 minute
● Slony: High Availability

● Downtime: reaction + some minutes
● Can be automated with failover – order of seconds (lag)

● Data loss: failover – some transactions

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24

